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LETT'ER TO THE EDITOR 

Computer experimental evidence for an energy-dependent 
metal-insulator transition in a one-dimensional 
incommensurate system 

K A Chao and G Wahlstrom 
Department of Physics and Measurement Technology, University of Linkoping, S-58183 
Linkoping, Sweden 

Received 17 October 1986 

Abstract. Based on the Landauer formula for DC conductivity, a computer experiment i s  
performed on a chain of lo7 atoms to show the energy-dependent metal-insulator transition 
in the Aubry model. The self-similarity of conducting channels in the conducting phase 
is also demonstrated. 

One of the most discussed issues of the one-dimensional Aubry (1978) model 
X 

H ( Q )  = 1 [ v cos(Qn)ai,an + t(aL+,an +ai,-,an)I (1) 
n=-m 

where Q is incommensurate to T, is the characteristic features of the eigenfunctions 
in the vicinity of V / t  =2. Aubry and AndrC (1980) showed that the Hamiltonian (1) 
is self-dual with respect to the Fourier transform. By assuming exponential localisation 
of all possibly existing localised states, Aubry and AndrC combined the self-duality 
property and a formula developed by Thouless (1972) to conclude that in the regime 
V /  t > 2 all eigenstates are exponentially localised, whilst in the regime V /  t < 2 all 
eigenstates are Bloch-like extended. Although many succeeding works in the field 
found no disagreement with this conclusion, there are controversial arguments regard- 
ing the delocalisation of eigenstates in the region V /  t < 2. 

Avron and Simon (1982) and Simon (1982) have shown that if Q / T  is extremely 
well approximated by a rational number (namely, Q / T  is a Liouville number), there 
exists an unusual type of eigenfunction of (1) which we call a resonance state. A 
resonance state has large amplitudes at positions separated by long distances. Even 
for irrational Q / T  resonance, states also appear if V / t  = 2  (Avron and Simon 1982). 
Furthermore, resonance states were discovered later in other models similar to (1) but 
with the potential cos(@) replaced by tan(@) (Grempel et a1 1982, 1984), or by 
cos(Qn)+fcos(2Qn) (Chao et a1 1985). 

Resonance states are neither exponentially localised nor Bloch-like extended. Since 
Thouless' formula (1972) applies only to exponential localisation, the energy-indepen- 
dent metal-insulator transition ( MIT) at V /  t = 2 derived by Aubry and Andre (1P80) 
may be modified. It has been shown that the M I T  is energy dependent and so mobility 
edges exist in some non-self-dual models, for example, the cos( Q n )  + f  cos(2Qn) 
potential model (Soukoulis and Economou 1982, Chao et a1 1985). In this non-self-dual 
model, for fixed value of V l t ,  as the M I T  is approached from the metallic side, the DC 
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conductivity U (  E )  shows a superperiodic structure with superperiod 2( E )  (Liu and 
Chao 1986). If we approximate Q / 2 r  sequentially by Liouville numbers l , / L , ,  
1 2 /  L , ,  . . . , with L, < L,, ,  , then when E approaches a mobility edge E,, 2 ( E )  increases 
and at well defined energies E,,  has values 2 ( E , )  = L, .  Consequently, via the Liouville 
number approximation of Q / 2 r ,  the energy-dependent M I T  of the cos( Qn) + f ( 2 Q n )  
potential model is closely related to the existence of resonance states near mobility 
edges. 

If we incorporate these results to the above-mentioned existences of resonance states 
in the Aubry model, it is worthwhile to perform a careful computer experiment to 
determine whether the M I T  in the vicinity of V /  t = 2 is energy dependent. This is the 
purpose of the present letter. 

Giving the values of V / t  and 0, we use the transfer-matrix method to calculate 
the energy-dependent total transmission coefficient T (  E )  of a chain of lo7 atoms and 
then use the Landauer formula (1970) to obtain the dimensionless resistance R(  E )  = 
[l  - T ( E ) ] /  T ( E ) .  The computation procedure has already been given earlier (Liu and 
Chao 1986). If T ( E )  is less than lo-', the corresponding eigenstate is classified as 
non-conducting. It is important to mention that we did not find any value of T ( E )  
between lo-* and 5.3 x lo-'. Hence, all conducting states have T (  E )  greater than 
Furthermore, for almost all non-conducting states, T ( E )  decreases to lo-' within a 
distance much shorter than the whole chain length. 

We set t = 1 as our energy units. I t  is well known that the transfer-matrix method 
works only for eigenenergies I El < 2t  = 2. For a given value of V* = ( V,-  V ) /  V, = 
( 2 -  V)/2, the calculated results will be presented in the Q - E  plane. Because of 
symmetry, we only need to study the region O <  E < 2 and O <  Q < r. Let us first 
calculate the eigenenergy spectra of (1) with Q /  n- approximated by rational numbers. 
In figure 1 the allowed eigenenergies are indicated by black segments for V* between 
0 and since spectra for different V* are indistinguishable within the accuracy of 
plotting. The same energy-band structures were first obtained by Hofstadter (1976). 
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Figure 1. Bands of allowed eigenenergies for O <  V* < where V* = ( V,- 
( 2 -  V)/2.  
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For V* = we have calculated the resistance at every point ( Q  = nSQ, E = m S E )  
in the Q- E plane with SQ = 0.0125 and SE = 0.000 25. The eigenenergies of conducting 
states are marked by black dots in figure 2. If we compare figures 1 and 2, obviously 
not all eigenstates are conducting. Similar results on conducting eigenstates are shown 
in figure 3 for V* = but with smaller SQ = 0.0025 and SE = 0.000 05. The inset 
in figure 3 is for V* = with even smaller SQ = 0.0005 and 6 E  = 0.000 01. We see 

Figure 2. Conducting eigenstates are marked by dots in the Q-E plane with SQ = 0.0125 
and SE = 0,000 2 5 ,  and V = 

I I I 1 I I 
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Figure 3. Similar to figure 2 for V* = IO-' but with SQ = 0.0025 and SE = 0.000 05. Inset 
is for V* = with SQ=0.0005 and SE =0.00001. 
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Figure 4. Conducting states for Q = 1.2517. See text for details. 
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Figure 5. The triangular region A in figure 2 is recalculated with SQ = 0.002 and S E  = 0.0001. 
The chain line corresponds to E = 2 in figure 2. 
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Figure 6. The triangular regions B and C in figure 2 are recalculated with SQ = 0.002 and 
SE = 0.0001 to demonstrate the self-similarity. 

Finally, we examine the region T in row A with 6E = lo-*. For n > 3, we found no  
conducting states at all. 

The size of a chain of lo7 atoms is comparable to that of a realistic macroscopic 
sample. Consequently, our computer experiment provides the evidence of an energy- 
dependent metal-insulator transition in the vicinity of V/ t = 2. 

We have also set 6Q = 0.002 and 6E = 0.0001 to perform a better calculation over 
the three triangular regions A, B and C in figure 2. The results for triangle A, shown 
in figure 5 ,  resemble the original figure 2. The results for triangles B and C, shown in 
figure 6, are almost identical to each other. Such comparisons demonstrate the self- 
similarity of the conducting channels of the Aubry model. 

This work was financially supported by the Swedish Natural Science Research Council 
under Grant No NFR-FFU-3996-136. 
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